Antares, un télescope sous-marin pour détecter les neutrinos

La construction du premier télescope sous-marin à neutrinos vient de s'achever. Depuis le début du mois de juin, les deux dernières lignes de détection d'Antares scrutent le fond de la Méditerranée à la recherche de neutrinos d'origine cosmique. Ce sont désormais 12 lignes de détection qui cherchent à capter ces particules élémentaires, témoins des phénomènes les plus violents de l'Univers.
Le neutrino est une particule élémentaire sans charge électrique qui interagit très faiblement avec la matière : contrairement aux autres particules, ce « passe-muraille » est capable de traverser l’Univers en ligne droite sans être arrêté par la matière ou dévié par les champs magnétiques qu’il rencontre sur son passage. Il est ainsi un messager unique en son genre qui peut aider les astrophysiciens à observer et à mieux comprendre certains objets, sièges de phénomènes cataclysmiques. Le neutrino permet d’ouvrir une nouvelle fenêtre d’observation sur l’Univers… à condition toutefois d’être détecté, ce qui est loin d’être évident puisqu’il interagit très peu avec la matière. Le détecteur susceptible de repérer sa trace doit, par conséquent, être le plus grand possible afin d’accroître les chances de l’intercepter. Le défi a été relevé en 1996 par des équipes du CEA et du CNRS et c’est ainsi que le projet Antares a vu le jour. Après une longue période d’étude des propriétés du milieu marin, une première ligne de détection souple de 400 mètres de haut a été immergée en février 2006 par 2500 mètres de profondeur au large de Toulon, grâce au savoir-faire et aux équipements de l’Ifremer. Aujourd’hui, ce sont 12 lignes qui sont ancrées aux fonds marins sur un espace équivalent à 4 terrains de football. Elles sont équipées de près de 900 modules optiques, les « yeux » du télescope, imaginés et construits par les équipes Antares. La moitié des lignes a été assemblée au Centre de physique des particules de Marseille (CNRS/Université de la Méditerranée), laboratoire support de l’expérience, l’autre moitié à l’Institut de recherche sur les lois fondamentales de l’Univers (CEA Irfu, Saclay). Le détecteur Antares est protégé du bruit de fond que constitue le rayonnement cosmique par les 2000 mètres d’eau qui le recouvrent. Ces profondeurs abyssales permettent de bénéficier d’une obscurité totale, à peine troublée par quelques animaux bioluminescents. Le principe du télescope Antares est de faire de la Terre elle-même la cible des neutrinos. Le globe terrestre laisse passer les neutrinos mais arrête les autres particules. Certains de ces neutrinos, en traversant la Terre, vont entrer en collision avec le noyau d’un atome. Cette rencontre, statistiquement très rare, produit un muon, une particule chargée voisine de l’électron, qui se déplace dans la même direction que le neutrino d’origine. Ce muon peut parcourir jusqu’à une dizaine de kilomètres dans la croûte terrestre. En émergeant dans l’eau, il laisse derrière lui un sillage très faiblement lumineux. C’est ce sillage ascendant laissé par le muon que détectent les « yeux » d’Antares. Ainsi, c’est le ciel de l’hémisphère Sud qui est observé au travers de la Terre. Cette portion de ciel inclut le centre galactique, siège de phénomènes extrêmement violents. Lire la totalité du communiqué sur le site du CNRS Pour en savoir plus : Le film «Les yeux d’Antares» de J.-F. Dars et A. Papillault (2004, 52 min.) peut être visionné en ligne à l’adresse suivante : http://videotheque.cnrs.fr/index.php?urlaction=doc&id;_doc=1201 .