D'où vient la masse du proton ?
A 95 % de l'énergie des quarks et des gluons, répondent les physiciens du Centre de physique théorique de Marseille. Menés à partir du modèle standard qui décrit les interactions entre particules élémentaires, leurs calculs prouvent que la masse du proton résulte principalement de l'énergie portée par ces tous petits "éléments" que sont les quarks et les gluons.
Dans les noyaux des atomes, on trouve des protons et des neutrons. Ceux-ci sont eux-mêmes constitués de quarks et de gluons, sortes de petites sous-structures fondamentales. Or, la masse des gluons est nulle. Et, contrairement à ce que l'on pourrait penser, la masse des quarks qui composent un proton ne représente que 5% de la masse de ce dernier. D'où proviennent donc les 95% restants ?
Une équipe de physiciens français, allemands et hongrois vient de prouver que ces 95% résultent de l'énergie due aux mouvements des quarks et des gluons, et à leurs interactions. Une masse issue d'une énergie, c'est un résultat quelque peu déroutant, pourtant traduit par la célèbre formule d'Einstein E=mc2 énonçant l'équivalence entre masse et énergie. Jusqu'ici hypothèse, ce résultat est pour la première fois corroboré.
Les chercheurs, pilotés en France par Laurent Lellouch, directeur de recherche CNRS au Centre de physique théorique, se sont appuyés sur plus de vingt ans de recherches effectuées par des physiciens du monde entier. Partant des équations de la chromodynamique quantique, c'est-à-dire la théorie qui décrit les interactions fortes, ils sont parvenus à calculer la masse des protons, des neutrons et autres particules du même type. Résultat, les masses obtenues par le calcul sont en excellent accord avec celles mesurées expérimentalement. Les chercheurs confirment ainsi que le modèle standard est correct pour décrire l'origine de la masse de ces particules et donc celle de plus de 99% de l'univers visible, comprenant le Soleil, la Terre, nous-même et tous les objets qui nous entourent.
Lire la totalité du communiqué sur le site du CNRS
Pour en savoir plus :
- Le site internet du Centre de Physique Théorique de Marseille ;
- Lire l'article (en anglais) Ab Initio Determination of Light Hadron Masses publié par la revue Science, vol. 322. no. 5905, pp. 1224 - 1227 (21 novembre 2008).